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Abstract— Breast cancer diagnosis requires a pathologist to 
analyze the histology slides under various magnifications. An 
automated diagnosis method to aid pathologists that is 
magnification independent will significantly save time, reduce 
cost and mitigate subjectivity and errors in current 
histopathological diagnosis procedures. This paper presents a 
deep learning network, called MVPNet and a customized data 
augmentation technique, called NuView, for magnification 
independent diagnosis. MVPNet is tailored to tackle the most 
common issues (diversity, relatively small size of datasets and 
manifestation of diagnostic biomarkers at various 
magnification levels) with breast cancer histology data to 
perform the classification. The network simultaneously 
analyzes local and global features of a given tissue image. It 
does so by viewing the tissue at varying levels of relative nuclei 
sizes. MVPNet has significantly less parameters than standard 
transfer learning deep models with comparable performance 
and it combines and processes local and global features 
simulatenously for effective diagnosis. Additionally, NuView 
extracts tumor nuclei location and points the attention of 
MVPNet to the informative region specifically. The method 
gives an average magnification independent classification 
accuracy of 92.2% as compared to 83% reported in literature 
on the BreaKHis database. 

Keywords - Deep convolutional networks, multi-view 
network, tumor location, Gaussian mixture models 

I.  INTRODUCTION 

Breast cancer persists as the most common form of 
cancer in women, with reports projecting high incidence 
rates and high mortality and morbidity [1]. While researchers 
point positively towards a reduction in mortality rates, the 
steeply increasing numbers call for a higher diagnostic power 
with a feasibility in daily clinical routine. 

Histopathological image analysis has been the basis of 
breast cancer diagnosis for decades. A common practice is to 
stain the tissues with Hematoxylin and Eosin (H&E) in order 
to observe them more clearly. Despite advances in digital 
imaging techniques, majority of breast cancer diagnosis is 
performed by pathologists manually examining the tissue 
slides under a microscope. This task is time consuming as 
pathologists have to scan the tissue slide at multiple 
magnifications to identify biomarkers. With breast cancer 
incidence reports consistently projecting increasing numbers, 
the individual cases manifest in complex forms, making the 
task of diagnosis a complex one. Protocol, therefore, 
suggests the pathologists to look at more number of 
quantitative biomarkers, making the diagnosis subjective. 

These biomarkers are magnification dependent, with features 
like infiltrative patterns, size and invasiveness of tumors 
revealing in lower magnifications and individual mitotic 
activity showing in higher magnifications. Assessment of 
each individual tissue for all features at multiple 
magnifications also makes this a time consuming process. 
Breast cancer tissues have very subtle differences amongst 
different classes in texture, color and morphology which 
makes breast cancer histology data an extremely diverse one. 
Pathologists need to possess rich experience and knowledge 
to assess the cancer tissues with accuracy and finesse. This 
also causes inter-pathologist variability. There is a large 
window for errors and variations in the diagnosis owing to 
human errors and pathologist experience, adding to the 
inconsistency and variability. Research suggests that 
pathologists prefer to analyze tissue slides under a 
microscope as compared to analyzing digital images; with no 
appreciable change in accuracy. Storage of these glass slides 
raises the cost of diagnostic process.  

To be a practical aid for pathologists, an automated 
method should diagnose cancer at any magnification, 
without any additional immunohistochemical markers or 
human intervention. This would make the diagnosis fast, 
low-cost, objective and consistent and can be introduced in 
daily routine to address rising breast cancer incidence.  

In this paper, the authors propose a method that aims to 
tackle these problems using a deep learning system. The 
network combines high and low level features to be 
processed together and integrates learning principles of 
modular residual networks to avoid overfitting and cater to 
smaller datasets, point convolutions for dimensionality 
reduction and widening the network to handle the highly 
diverse nature of breast cancer histology. 

II. RELATED WORK AND CONTRIBUTIONS 

A. Related work 
There has been extensive work in automating tumor 

detection. The research community has identified automated 
diagnosis as a vital need. Early work attempted binary 
classification of a tumor into benign and malignant by 
extracting biomarkers such as nuclei shape, size, mitosis etc. 
and applying machine learning classifiers. Ciresan et al., 
detected mitotic activity [3] which is one of the features used 
to detect cell types in tumor [4, 5, 6]. These hand-crafted 
features have also been used in past research [7, 8, 9, 10] for 
classification of tumors. Doyle et. al., [11] have attempted to 
achieve cancer detection using structural and textural 
features such as Haralick features, Gabor filters and graph 
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methods such as Voronoi diagrams. ROI extraction using 
top-bottom hat transform for segmentation and SVM for 
subsequent classification has been done by Wang et. al. [12].  

In recent years, CNNs have played a major role in breast 
cancer detection tasks [13, 14, 15] instead of hand crafted 
features. Xu et al., [16] have successfully pointed out the role 
played by the regions surrounding nuclei like stroma and 
tubules and have also used deep networks to achieve tumor 
classification. Havaei et. al. [17] used CNNs to locate tumors 
by passing two different sized patches and multiple paths of 
different kernel sizes to achive tumor segmentation in 
greyscale MRI images. Despite increasingly sophisticated 
methods being introduced to automate the tumor 
classification and segmentation processes, very little has 
been done to address magnification invariant classification. 
All the above mentioned methods achieve detection with a 
prior knowledge of the incoming tissue slide’s 
magnification. Bayramoglu et. al., have identified the need 
for a standalone model for detection that does not need a-
priori information of the tissue resolution and proposed a 
method using CNNs [22]. Since breast cancer histology is 
considered to be extremely diverse and complex [2] as 
illustrated in Fig. 1, with each magnification posing a new 
set of distinguishable features as can be seen in Fig. 2, a lot 
of preprocessing is involved in most of these methods. If not, 
a different model is used at each of the resolutions [18]. 
Making the classification magnification dependent has been 
a way to control one of the many variabilities that come with 
the data. Removing this dependency gives another degree of 
robustness to automated diagnostics.MVPNet with NuView 
data augmentation, proposed below, tackles these issues. 

Figure 1: Diversity in a class of Breast Cancer (malignant). 

B. Contributions 
The important contributions of the proposed method are: 

(1) Use of multiple viewing paths in MVPNet that can view 
the tissue in different relative nuclei sizes, so as to handle 
multi-level feature extraction simultaneously (2) Use of 
NuView data augmentation method to introduce random 
magnifications using contextual information provided by 
location of tumor regions which makes learning robust to 
changes in resolution (3) Striking a balance between depth 
and width of a network for optimal classification 
performance. The depth is decided by the number of modular 
residual network style blocks. The width is decided via the 
use of 1x1 convolutions and multiple densely connected 
layers. A description of each of these techniques and their 
impact has been provided in detail in Sections III and IV. 

 
Figure 2: Magnifications of same tissue slide in the BreaKHis database. 

III. TECHNICAL APPROACH 

A. Overview of algorithm 
To successfully detect tumor types, MVPNet, with 

NuView emulate the manual dexterity of viewing tissue 

slides and pathologists’ ability to quantitatively analyze 

biomarkers at multiple magnifications in histopathology 

images. A tumor is detected by inspecting and quantitatively 

analyzing various biomarkers like nuclei shape, size, 

uniformity, tumor location, shape, infiltrative growth 

patterns etc. All of these indicators manifest at different 

resolutions. To address this issue, a framework should be 

able to view and process both high and low level features of 

a tissue slide. MVPNet achieves this by passing the same 

tissue slide parallelly through two paths. The multi-path 

approach mimics the manual perceptive abilities by 

incorporating local and globalview of the features. 

Mathematically, this is achieved by having different kernel 

sizes for filters in parallel paths. Smaller kernel size looks at 

low level features such a nuclei size, shape, mitotic figures 

etc., while the larger kernel analyzes the infiltrative growth 

patterns, tumor size etc. The kernel sizes in current network 

are 7x7 and 11x11. These kernel sizes account for the wide 

range of magnifications (40X to 400X) in the training set. 

To make the network robust to any new resolutions that 

might be available in the future, a customized data 

augmentation (NuView) is employed to efficiently locate 

tumor regions and extract patches with randomized 

magnifications from that location; thereby ensuring high 

information flow into the network. To account for the high 

diversity of breast cancer data (Fig. 1), the network is 

widened (more number of neurons) by adding multiple fully 

connected layers. Typically, deeper networks reuse features 

and wider networks have higher capacity to learn newer 

features. The network is composed of multiple modular 

residual blocks that automatically bypass unused modules in 

the face of smaller datasets, and can cater to larger datasets 

should new data be available in the future. An overview of 

the algorithm with custom data augmentation (NuView) is 

shown in Fig. 3. In addition to standard data augmentation, 

the patches of various magnifications on tumor location are 

obtained. They are further subjected to standard data 

augmentation, constituting an enriched and balanced 

training set. Then classification is done using MVPNet.  

B. NuView augmentation  
In histopathology images, nuclei are by far the most 

significant indicators of tumor. The data augmentation 
technique, termed NuView, in this proposed system is 
customized to supplement the benefits of standard operations 
for data augmentation such as random zooming, cropping, 
resizing of training data. NuView leverages the location of 
the areas where most nuclei are clustered, indicating where 
the tumor is localized. Bringing the attention of the network 
to these areas can boost the performance of automated 
diagnosis. The images in the training set are subjected to 
clustering using a mixture of Gaussian models (GMM). 
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GMM assumes that an overall population is a mixture of a 
finite number of components. In this segmentation, the tissue 
is segmented into three components, one of them being 
nuclei. This clustering is done using the Expectation-
Maximization (EM) algorithm. EM assumes random initial 
cluster centers and variances and each point is assigned a 
(posterior) probability that the point belongs to that cluster. 
Thus, each point belongs to all clusters with some 
probability. Using this and the priors of each cluster (set to 
uniform for the first iteration), new cluster centers and 
variances are found. Initial cluster centers and variances are 
initialized to preset values. This process is repeated until 
convergence is obtained, i.e., the likelihood becomes 
constant. This locates the nuclei as shown in Fig. 4. 

 
Figure 3: Overview of proposed algorithm as described in Section IIIA. 

 
Figure 4: EM based segmentation for nuclei extraction at 200X. 

The mask that extracts nuclei is used to find the region 
with most information in the tissue slide. This is done by 
nuclei counting, or effectively, the area with the highest 
concentration of nuclei. An image displaying one of the 
clusters contains only nuclei, called the intermediate image. 
Across this intermediate image, a patch of desired size slides 
to find the area with the maximum number of nuclei. That 
area is then extracted and resized to the original image (see 
Fig. 5). The size of the patch determines the magnification of 
the resultant informative patch. In Fig. 5, the patch used is 
half the size of an original image at 100X magnification, thus 
the resultant patch is generated at 200X magnification. 

This informative patch is added to the training set the 
bolster it. Depending on the size of patches, randomized 
magnifications can be added to the new training set as 
needed. An added advantage of this method is to tackle the 
imbalanced class problem. If proportionally higher number 
of patches are extracted from the less dominant class images, 
it balances both classes to avoid classification bias towards 
more dominant classes. The importance of using the 
contextual information of nuclei concentration as random 
resolution patches in data augmentation step can be seen in 
Section V where results are compared to no patches (just 
standard data augmentation) and using randomly magnified 
patches without using contextual information in extracting 

them (random patches). The network architecture used in the 
proposed model has been described in detail in Section IV. 

 
Figure 5: Localizing significant tumor regions using GMM. The blue 

dotted box shows the sliding window and the green solid box shows the 

subsequent informative patch selected. 

IV. MODEL ARCHITECTURE 

The augmented training set is given as an input to 
MVPNet for magnification invariant classification. This 
paper proposes a multi-view architecture that has the 
capacity to view regional and global features of the tissue at 
the same time. The following sub-sections describe the use 
of various functionalities of the network.  

A. Multi-view module 
To assess features at varying level of relative nuclei size 

at the same time, the multi-view block is designed. While a 
single stack of multiple convolutional layers can analyze a 
set of features end to end at a given time, this block sends the 
same input into two parallel blocks of varied convolution 
kernel sizes (11x11 and 7x7 kernel sizes). The path with 
higher kernel size views a relatively more holistic view such 
as infiltrative growth pattern as compared to the smaller 
kernel size which views more regional features, native to 
mitotic activity. A typical multi-view block looks as shown 
in Fig. 6. The 1x1 convolutions help in dimensionality 
reduction and are explained in detail in Section IV C. Each 
of the convolutional block is followed by a maxpooling 
block with stride 2 and size of kernel (k+1)/2, where k is the 
kernel size of convolutional filter. This is to keep the size of 
activation map consistent in the two paths.  

 

Figure 6: Multi-view module. 
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B. Identity and projection blocks 
Identity blocks are a key feature introduced in residual 

networks and have many advantages in deep networks [19].  
An identity block contains an identity path that can pass 

information through the convolutional path or the identity 
path based on the amount of information learnt in that block, 
avoiding over learning of features. Each identity block acts 
as its own mini-network and can be added or removed 
according to need – which provides modularity to the 
network. This modular structure with identity path also helps 
in avoiding vanishing and exploding gradient problems.  

If the identity path in the above block is replaced with a 
projection (1x1 convolution), some extra features may be 
learnt at the cost of high dimensionality and time complexity. 
To avoid possible degradation problem, it is practice to 
commonly introduce a few projection blocks after every few 
identity blocks. Every few identity blocks are followed by a 
projection block to facilitate and regulate the learning 
process. In MVPNet, a projection block followed by a 
predefined number of identity blocks is collectively called a 
combinatorial module. Typical 64 filter identity and 
projection blocks are shown in Fig. 7(a) and (b) respectively. g ( ) ( ) p

 

Figure 7: (a) Identity block and (b) Projection block, both with 64 filters. 

C. Use of 1x1 convolutions 
1x1 convolutions were initially proposed in the 

“Network in Network” paper by Lin et. al. [23]. These 

blocks with 1x1 kernel size achieve dimensionality 

reduction as well as makes the network orders of magnitude 

faster and less memory intensive. Typically, a 1x1 layer has 

9X fewer parameters than a 3x3 block. This block helps 

reduce overall depth of a network, since adding one of these 

is mathematically equivalent to adding a multi-layer 

perceptron [23]. This can also be effectively viewed as 

making the network denser since each block acts like a fully 

connected network. Each of 1x1 convolution is followed by 

ReLU activation, therefore, adding to non-linearity in 

feature mapping. Summarizing, the 1x1 convolutions help 

build the balance between depth and width, make it less 

memory intensive and faster with a locally denser and non-

linear feature mapping and lower information loss.  

D. Specifications of model architecture 
The full model architecture is shown in Fig. 9. The input 

of the network is given to the first section of MVPNet - the 
multi-view module. To accommodate all resolutions in the 

range of 40 to 400X, the filter sizes chosen are 11x11 and 

7x7 in each of the two paths. A stride of 2x2 is used to 

prevent large activation maps. The convolutions in each 

path are followed by 1x1 convolutions, immediately 

followed by ReLU activation. Once the features from both 

paths are combined, a convolutional block with a  5x5 

kernel size and a 1x1 convolution is used. This entire block 

is collectively called the multi-view module. In each of 

these convolutions, 64 filters have been used. The second 

section of MVPNet follows the multi-view module, and is a 

series of 3 combinatorial modules. The first combinatorial 

module consists of three blocks - one projection and two 

identity blocks. The number of filters in each of these blocks 

is 64, 64 and 256 (Fig. 8). The next combinatorial module 

has 128, 128, 512 filters with five blocks – one projection 

and four identity blocks. The third and final combinatorial 

module has 256, 256, 1024 filters with 3 blocks – one 

projection and two identity. Maxpooling is done after every 

convolution in the multi-path module and batch 

normalization is employed after convolution in all 

combinatorial modules. The kernel size for all the filters in 

the combinatorial modules is 3x3. The combinatorial 

modules make the network deeper. After these modules, an 

average pooling layer with 7x7 kernel size is added. The 

final section of MVPNet has three fully connected layers, 

which in combination with the multi-view block effectively 

make it wider. The first two fully connected (FC) layers 

have 1024 and 512 neurons. All the layers up to this point 

have ReLU activation. The third FC layer has # of neurons 

equal to # of classes. This has softmax activation.  

 
Figure 8: Order of combinatorial modules used in MVPNet. 

The input images in Fig. 9 come from the balanced 

training set shown in Fig. 3. The multi-view module is 

shown in Fig. 6. The (64) in the figure refers to number of 

filters. This is followed by the combinatorial module as 

shown in Fig. 8. The features from these modules go into 2 

fully connected layers of 1024 and 512 neurons each. This 

output is given to the softmax classifier.  

E. Model training specifications 
Stochastic Gradient Descent (SGD) optimizer is used to 

train the MVPNet from scratch with an adaptive learning 

rate function. Adam optimizer was also tested which 

converges faster but doesn’t always converge to the best 

solution when trained from scratch. The weights are 

initialized according to He initialization [20] and random 

normal distribution (with no major change in performance). 

He initialization draws samples from a truncated normal 

distribution with mean 0 and standard deviation given by:  

 
where fin is number of input units in the weight of that layer. 

Among many batch sizes tested, the batch size used is 

24. Nesterov criteria is applied to the optimizer and the 

training runs for a maximum of 1000 epochs. All input 

images are resized to 224x224. The loss used is the 

categorical cross-entropy loss and the model with the best 

performance is saved among all epochs.  

(a) (b) 
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Figure 9: Complete MVPNet architecture. 

V. RESULTS 

A. Description of dataset 
The BreaKHis database has data from 82 anonymous 

patients from the Pathological Anatomy and Cytopathology 

(P&D) Lab, Brazil [18]. BreaKHis has data from various 

tumors divided into 4 magnifications: 40X, 100X, 200X and 

400X, as shown in Fig. 2, and is comprised of 7909 H&E 

stained surgical biopsies, (460x700 pixels, RGB images) 

divided into 2480 benign and 5429 malignant tumor images. 

The training/validation and testing sets are divided as 70% 

and 30% such that data from one patient is not 

simultaneously included in both training and testing sets.  

B. Extraction of contextual information 
The extraction of contextual information is the most 

crucial step in the customized data augmentation. This 
requires segmenting the tissue slide so as to obtain the 
location of nuclei clusters. The training set is augmented 
using these segmented results (see Section III). The results of 
EM segmentation at 200X and 400X magnifications are 
shown in Fig. 10. It can be seen that nuclei clusters are well 
detected and are subjected to the process in Section III.  

 
                       (a)              (b) 

Figure 10: Segmentation results (a) benign at 200X, (b) malignant at 400X. 

C. Magnification invariant classification results  
Both MVPNet and ResNet50 are trained and tested using 

7-fold cross-validation with and without employing NuView. 
HSV and YCbCr spaces mitigate the illumination and 
redundant color effects and thus, they have been used here to 
show comparison with the proposed method. The model 
performs just as well with any color space implying it uses 
the parallel views to obtain a holistic view of features and is 
not dependent on color for its classification. A comparison of 
results for magnification dependent classification is offered 
in research [21]. AlexNet results provided [21] are 
magnification dependent, hence, comparison in Table 1 is 
done by considering average AlexNet performance across all 
magnification levels. This gives an upper bound on its 
performance considering the AlexNet were to give optimum 
performance at individual magnification level when all 
magnifications are combined in the training set. Thus, the 
error percentage in AlexNet does not come from 7-fold 

validation but the performance average over all 
magnifications. Bayramoglu et. al. [22] has reported results 
on 5 fold cross validation. The results are for magnification 
invariant detection, but separated by magnification levels. 
Table 1 shows the average of all results. 

In Table 1, SDA stands for Standard Data Augmentation 

without addition of any informative patches. Random 
patches in Table 1 is SDA augmented by randomly selected 

patches unlike NuView which extracts informative patches. 

Accuracy in Table 1 is defined as the ratio of correctly 

classified instances over all instances, i.e., the percentage of 

correct classifications. Sensitivity is defined as the true 

positive rate, or the percentage of actual malignant tumors 

that are correctly classified as such. The specificity in the 

table is defined as the true negative rate, measuring the 

actual benign tumors being correctly identified as such. 

TABLE 1: RESULTS OF MAGNIFICATION INVARIANT 

CLASSIFICATION 
Model Accuracy Sensitivity Specificity

Bayramoglu et al 
[22] 

83.2 ± 3.1% NA NA 

AlexNet 87.2 ± 5.5% NA NA 

ResNet50+NuView+
RGB images 

92.5 ± 1.4% 94.6 ± 1.4% 91.2 ± 2.2% 

ResNet50+random 
patches+RGB 

89.9 ± 1.8% 94.3 ± 1.7% 88.3 ± 2.1% 

MVPNet+NuView+
RGB images 

92.2 ± 1.6% 94.2 ± 2.2% 92.3 ± 2.4% 

MVPNet+NuView+
HSV images 

90.3 ± 1.7% 92.6 ± 2.1% 91 ± 1.8% 

MVPNet+NuView+
YCbCr images 

91.1 ± 1.6% 91.4 ± 2.3% 92.6 ± 1.7% 

MVPNet+random 
patches+RGB 

88.3 ± 2.1% 84.1 ± 1.9% 93.3 ± 2.3% 

MVPNet+SDA+
RGB 

84.1 ± 2.2% 80.5 ± 1.8% 94.2 ± 2.4% 

The average values of ROC plots and standard deviation 

over 7 folds are given in Fig. 11. The threshold to obtain the 

ROC plot in this case has been varied from 0 to 1 over steps 

of 0.1. It can be seen from the Area Under the Curve (AUC) 

that the performance for MVPNet is comparable to 

ResNet50. The ROC plots are shown for MVPNet with 

NuView data augmentation and ResNet50 with NuView. 

Both results are obtained on RGB input images.  

D. Model parameters and memory requirements 
MVPNet has approximately 10.4M parameters, as 

compared to 60M parameters in AlexNet and about 26M 

parameters in ResNet50. Number of parameters to be learnt 

during the training of data depend on number of layers and 

number of neurons per layer. It can be seen that for almost 

comparable performance, MVPNet uses 2.6 times less 

number of parameters as ResNet50 and further less than 

AlexNet. This reduces the memory requirements of the 

model when storing only weights of the model, with 

MVPNet requiring less half as much memory to store its 

weights as compared to ResNet50. MVPNet needs about 4-

5 mins to train per epoch and testing takes about 0.05 

sec/image using NVIDIA GeForce GTX1080 graphics card. 
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Figure 11: ROC plot for 7-fold validation of ResNet50 and MVPNet under 

similar conditions. 

TABLE 2: MODEL PARAMETERS 

Model # parameters 
Model size in 

memory 

AlexNet 60M 240MB 

ResNet50 ~27M 103MB 

MVPNet ~10M 41.3MB 

VI. CONCLUSIONS 

MVPNet, using the NuView data augmentation scheme, 

surpasses the current standard in automated, magnification 

invariant, breast cancer histology classification task. The use 

of contextual information of tumor location and nuclei 

density in a tissue image improves learning in a cancer 

detection task as compared to standard data augmentation. 

Widening the network with multiple viewing paths instead 

of only depth in a network (like ResNets) significantly 

reduces the training and memory requirements without 

appreciable loss in performance, increasing the learning 

capability of the network. This is achieved in a fast, 

consistent and objective way; without any human 

intervention, thus, improving the reliability and robustness 

of automated methods for use in clinical pathology. 
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